Механизмы формирования гамет при независимом наследовании признаков

Механизмы формирования гамет при независимом наследовании признаков

Механизмы формирования гамет при независимом наследовании признаков

Данная закономерность используется при составлении генетических карт хромосом (картировании). Расстояние между двумя локусами оценивается путем подсчета количества рекомбинаций на 100 гамет.

Это расстояние считается единицей измерения длины гена и называется сентиморганом в честь генетика Т.

Моргана, впервые описавшего группы сцепленных генов у плодовой мушки дрозофилы — любимого объекта генетиков.

Во время оплодотворения каждая их четырех типов га­мет одного организма случайно встречается с любой из гамет другого организма.
Такой характер наследования признаков впервые был описан Г. Менделем в опытах на горохе, когда одновременно анализировалось наследование в ряду поколений нескольких признаков, например цвета и формы горошин (рис. 6.11).

Менделирующие признаки человека

В связи с тем что кариотип организма — это диплоидный набор хромосом, большинство генов в соматических клетках представлены аллельными парами.

Аллелъные гены, расположенные в соответствующих участках гомологичных хромосом, взаимодействуя между собой, определяют развитие того или иного варианта соответствующего признака (см. разд. 3.6.5.2).

Являясь специфической характеристикой вида, кариотип представителей разного пола различается по паре половых хромосом (см. разд. 6.1.2.1).Гомогаметный пол, имеющий две одинаковые половые хромосомы XX, диплоиден по генам этих хромосом.

Гетерогаметный пол имеет одинарный набор генов Х-хромосомы (ХО) или негомологичных участков Х- и Y-хромосом.
Если при дигнбридном скрещивании во втором поколении последовательно провести подсчет полученных особей по каждому признаку в отдельности до результат получится такой же, как при моногчбридном скрещивании, т.e. 3 : 1.

Это возможно потому, что во время мейоза распределение (комбинирования) хромосом в половых клетках при их созревании идет независимо и может привести к появлению потомства с комбинацией признаков, отличных от родительских и прародительский особей.

Нарушение этих условий может приводить либо к отсутствию расщепления во втором поколении, либо к расщеплению в первом поколении; либо к искажению соотношения различных генотипов и фенотипов.

Законы Менделя имеют универсальный характер для всех диплоидных организмов, размножающихся половым способом.
Третий закон Менделя. Условия независимого наследования и комбинирования неаллельных генов.

Цитологические основы и универсальность законов Менделя.

Анализирующее скрещивание. Разработанный Менде­лем гибридологический метод изучения наследственности позволяет установить, гомозиготен или гетерозиготен орга­низм, имеющий доминантный фенотип по исследуемому гену (или исследуемым генам).
В потомстве идет расщепление по фенотипу 3 :1 по каждой паре признаков.

Закон независимого наследования справедлив лишь в том случае, если гены рассматриваемых пар признаков лежат в различных парах гомологичных хромосом. Гомологичные хромосомы сходны по форме, размерам и группам сцепления генов. Поведение любых пар негомологичных хромосом в мейозе не зависит друг от друга.

Расхождение: их к полюсам клетки носит случайный характер. Независимое наследование имеет, большое значение для эволюции; так как является источником комбинативной наследственности. Дигибриды – гибриды, полученные от скрещивания организмов, отличающихся одновременно двумя парами альтернативных признаков.

[“Вопрос рассмотрим на примере работ Г.Менделя…”].

Для дигибридного скрещивания Мендель взял гомозиготные растения гороха, отличающиеся по двум генам, определяющим окраску семян (желтые и зеленые) и форму семян (гладкие и морщинистые). Доминантные признаки — желтая окраска (А) и гладкая форма (В) семян.

Каждое растение образует один сорт гамет по изучаемым аллелям.
АВ-, Ав-, аВ- и ав-гамет. Пропорции, наблюдавшиеся Менделем соблюд-ся при условии: гомозиготности исх.форм, альт.

проявлениях признаков, одинаковой жизнеспособности гамет с разными генотипами, независимости проявления признака от внешн.условиях и генотип.окружения.

Наследственная программа, на основе которой формируется фенотип организма, сосредоточена главным образом в его хромосомном наборе. Это возможно, так как при мейозе распределение (комбини­рование) хромосом в половых клетках при их созревании идет независимо, что может привести к появлению по­томков, несущих признаки в сочета­ниях, не свойственных родительским и прародительским особям.

Лекция: Основные типы наследования признаков у человека

Если особи разного пола, имеющие изучаемый признак, встречаются приблизительно с одинаковой частотой, например, одинаково часто или одинаково редко, то можно думать, что изучаемый признак является аутосомным, то есть обусловливающий его ген расположен в аутосоме.

В то же время разные варианты этих признаков свободно комбинировались у потомков, встречаясь как в сочетаниях, наблюдаемых у их родителей (желтый цвет и гладкая форма или зеленый цвет и морщинистая форма), так и в новых сочетаниях (желтый цвет и морщинистая форма или зеленый цвет и гладкая форма).

На основании анализа полученных результатов Г.

Парадоксально, но в современной науке огромное внимание уделяется не столько самому третьему закону Менделя в его исходной формулировке, сколько исключениям из него.

Закон независимого комбинирования не соблюдается в том случае, если гены, контролирующие изучаемые признаки, сцеплены, т.е.

располагаются по соседству друг с другом на одной и той же хромосоме и передаются по наследству как связанная пара элементов, а не как отдельные элементы.

Ядерные и цитоплазматические структуры в процессе клеточного размножения распределяются между дочерними клетками по-разному. Это касается не только соматических клеток организма, но и его гамет. В связи с этим передача ядерных и цитоплазматических генов потомству подчиняется разным закономерностям, что обусловливает особенности наследования соответствующих признаков.

Так, при скрещивании растений с гладкими и морщинистым семенами все потомство имело гладкие семена. При скрещивании растений с пурпурными и белыми цветками у всех гибридов оказались лишь пурпурные лепестки цветков и т. д.

В случаях когда наследуемость определенной пары генов не подчиняется третьему закону Менделя, вероятнее всего эти гены наследуются вместе и, следовательно, располагаются на хромосе в непосредственной близости друг от друга. Зависимое наследование генов называется сцеплением, а статистический метод, используемый для анализа такого наследования, называется методом сцепления.

Однако при определенных условиях закономерности наследования сцепленных генов нарушаются. Основная причина этих нарушений — явление крос-синговера, приводящего к перекомбинации (рекомбинации) генов.

Биологическая основа рекомбинации заключается в том, что в процессе образования гамет гомологичные хромосомы, прежде чем разъединиться, обмениваются своими участками (подробнее о рекомбинации — в гл.

При скрещивании двух гетерозигот (Аа), в каждой из которых образуется два типа гамет (половина с доминантными аллелями — А, половина — с рецессивными — а), необходимо ожидать четыре возможных сочетания.

Яйцеклетка с аллелью А может быть оплодотворена с одинаковой долей вероятности как сперматозоидом с аллелью А, так и сперматозоидом с аллелью а; и яйцеклетка с аллелью а — сперматозоидом или с аллелью А, или аллелью а.

При образовании гамет у дигибрида из каждой пары ал­лельных генов, расположенных в различных парах гомоло­гичных хромосом, в гамету попадает только один, при этом вследствие случайности расхождения отцовских и материн­ских хромосом в первом делении мейоза ген А может с рав­ной вероятностью попасть в одну гамету с геном В или с ге­ном Ь. Точно так же как и ген а может объединиться в одной гамете с геном В или Ь.

ТИПЫ И ВАРИАНТЫ НАСЛЕДОВАНИЯ ПРИЗНАКОВ: Наследственная программа, на основе которой формируется фенотип организма, сосредоточена главным образом в его хромосомном наборе. Некоторое количество наследственного материала заключено также в цитоплазме клеток.

Знание и применение законов Менделя имеет огромное значение в медико-генетическом консультировании и определении генотипа фенотипически «здоровых» людей, родственники которых страдали наследственными заболеваниями, а также в выяснении степени риска развития этих заболеваний у родственников больных.

Открытие независимого характера наследования разных признаков у гороха дало возможность Г.

Менделю высказать предположение о дискретности наследственного материала, в котором за каждый признак отвечает своя пара наследственных задатков, сохраняющих в ряду поколений свою структуру и не смешивающихся друг с другом.

Современные представления о надмолекулярной организации наследственного материала в хромосомах и закономерностях их передачи в ряду поколений клеток и организмов объясняют независимый характер наследования признаков расположением соответствующих генов в негомологичных хромосомах.

Гены, расположенные в ядерных структурах — хромосомах, закономерно распределяются между дочерними клетками благодаря механизму митоза, который обеспечивает постоянную структуру кариотипа в ряду клеточных поколений (см. разд. 3.6.2.1).

Мейоз и оплодотворение обеспечивают сохранение постоянного кариотипа в ряду поколений организмов, размножающихся половым путем (см. разд. 3.6.2.2). В результате набор генов, заключенный в кариотипе, также остается постоянным в ряду поколений клеток и организмов. Закономерное поведение хромосом в митозе, мейозе и при оплодотворении обусловливает закономерности наследования признаков, контролируемых ядерными генами.

Наследование отдельных признаков наследственные болезни

Очевидно, этому закону должны подчиняться в первую очередь неаллельные гены, располагающиеся в разных (негомологичных) хромосомах. В таком случае независимый характер наследования признаков объясняется закономерностями поведения негомологичных хромосом в мейозе.

Названные хромосомы образуют со своими гомологами разные пары, или биваленты, которые в метафазе I мейоза случайно выстраиваются в плоскости экватора веретена деления. Затем в анафазе I мейоза гомологи каждой пары расходятся к разным полюсам веретена независимо от других пар.

В результате у каждого из полюсов возникают случайные сочетания отцовских и материнских хромосом в гаплоидном наборе (см. рис. 3.75). Следовательно, различные гаметы содержат разные комбинации отцовских и материнских аллелей неал-лельных генов.

Например, в слу-чае полного доминирования при скрещивании исходных форм, различающихся по двум признакам, в следующем поколении (F2) выявляются особи с четырьмя фенотипами в соотношении 9:3:3:1. При этом два фенотипа имеют «родительские» сочетания признаков, а оставшиеся два — новые. Данный закон основан на независимом поведении (расщеплении) нескольких пар гомологичных хромосом.

Итак, дигетерозиготная особь обра­зует 4 типа гамет. Естественно, что при скрещивании этих гетерозигот­ных особей любая из четырех типов гамет одного родителя может быть оплодотворена любой из четырех ти­пов гамет, сформированных другим родителем, т. е.

возможны 16 комби­наций. Такое же число комбинаций следует ожидать по законам комбина­торики. Мендель предложил обозначать буквами латинского алфавита.

Состояния, принадлежащие к одной паре признаков, обозначают одной и той же буквой, но доминантный аллель — большой, а рецессивный — маленькой.

Над решеткой по горизонтали выписывают гаме­ты одного родителя, а по левому краю решетки по вертикали — гаметы другого родителя. В квадратики же вписывают гено­типы зигот, образующихся при слиянии гамет.

Легко подсчитать, что по фенотипу потомство делится на че­тыре группы в следующем отношении: 9 желтых гладких: 3 желтых морщинистых: 3 зеленых гладких: 1 желтая мор­щинистая.

Если учитывать результаты расщепления по ка­ждой паре признаков в отдельности, то получится, что отно­шение числа желтых семян к числу зеленых и отношение числа гладких к числу морщинистых для каждой пары рав­но 3:1.

Закон проявляется, как правило, для тех пар признаков, гены которых находятся вне гомологичных хромосомах. Если обозначить буквой и число аллельных пар в негомологичных хромосомах, то число фенотипических классов будет определяться формулой 2n, а число генотипических классов — 3n. При неполном доминировании количество фенотипических и генотипических классов совпадает.

Ранее были рассмотрены характерные черты фенотипического проявления и наследования отдельных признаков. Однако фенотип организма представляет собой совокупность многих свойств, за формирование которых отвечают разные гены.

Так как общее число генов в генотипе значительно больше числа хромосом, каждая хромосома заключает в себе комплекс генов. В связи с этим неаллельные гены могут располагаться либо в разных хромосомах, либо входить в состав одной из них, занимая разные локусы АВС, КМР.

Этим определяется характер наследования группы признаков, которое может быть независимым или сцепленным.

Если особи разного пола, имеющие изучаемый признак, встречаются с разной частотой вплоть до отсутствия признака у представителей одного пола, то можно думать, что изучаемый признак сцеплен с полом: обусловливающий его ген расположен в половой хромосоме.

Источник: https://resto-kupola.ru/administrativnye-dela/8115-mekhanizmy-formirovaniya-gamet-pri-nezavisimom-nasledovanii-priznakov.html

Закономерности наследования признаков

Механизмы формирования гамет при независимом наследовании признаков

Признак — любая особенность организма, любое его качество или свойство, по которому можно отличить одну особь от другой.

Альтернативные признаки — взаимоисключающие варианты одного и того же признака (пример: желтая и зеленая окраска семян гороха).

Доминирование — преобладание у гибрида признака одного из его родителей.

Доминантный признак — преобладающий признак, появляющийся в первом поколении потомства у гетерозиготных особей и доминантных гомозигот (см. ниже).

Рецессивный признак — признак, который передается по наследству, но подавляется, не проявляясь у гетерозиготных потомков; проявляется в гомозиготном состоянии рецессивного гена.

Фенотип — совокупность всех внешних и внутренних признаков организма. Фенотип формируется при взаимодействии генотипа со средой обитания организма.

Аллельные, доминантные и рецессивные гены. Генотип

Аллель — одна из альтернативных форм существования гена, определяющего некоторый признак. Количество аллелей одного и того же гена может достигать нескольких десятков.
■ Каждая хромосома или хроматида может нести только один аллель данного гена.
■ В клетках одной особи присутствует только два аллеля каждого гена.

Локус — участок хромосомы, на котором расположен ген.

Аллельные гены — гены, расположенные в одних и тех же локусах гомологичных хромосом и отвечающие за альтернативные проявления одного и того же признака (пример: гены, отвечающие за цвет глаз человека). Аллельные гены обозначают одинаковыми буквами латинского алфавита: А, а; В, b.

Неаллельные гены — гены, расположенные в негомологичных хромосомах или в разных локусах гомологичных хромосом.

Доминантные гены — гены, соответствующие доминантным признакам; обозначаются прописными латинскими буквами (А, В).

Рецессивные гены — гены, соответствующие рецессивным признакам; обозначаются строчными латинскими буквами (а, b).

Генотип — совокупность всех генов данного организма.

Скрещивание

Скрещивание — получение потомства путем искусственного объединения генетического материала разных родителей (разных клеток) в одной клетке.

Генетическая запись скрещивания:

первая строка: буква Р (родители), генотип женского организма, знак скрещивания х, генотип мужского организма; под обозначениями генотипов могут быть указаны признаки организмов;

вторая строка: буква G (гаметы) и (под обозначениями генотипов, в кружочках) гаметы женской и мужской особей;

третья строка: буква Fk (потомки), генотипы потомков (под обозначениями генотипов могут быть указаны признаки организмов); к — номер поколения.

Гомозигота — зигота, содержащая одинаковые аллели одного гена — доминантные (АА, доминантная гомозигота) или рецессивные (аа, рецессивная гомозигота).

■ Гомозиготная особь образует один тип гамет и не дает расщепления при скрещивании.

Гетерозигота — зигота, содержащая два разных аллеля одного гена (Аа).

■ Гетерозиготная особь в потомстве дает расщепление по данному признаку. Образует несколько типов гамет.

Правило (гипотеза) чистоты гамет. Так как каждая хромосома или хроматида может нести только один аллель данного гена, то при расхождении хромосом (при первом делении мейоза) или хроматид (при втором делении мейоза) вместе с ними в гаплоидные клетки гамет отходит лишь по одному из аллелей каждой аллельной пары.

Поэтому: любая гамета организма несет только по одному аллелю каждого гена, т.е. аллели в гаметах не перемешиваются.

Следствия правила чистоты гамет:

гомозиготный организм образует только один тип гамет: 

гетерозиготный по одной паре генов организм образует два типа гамет (из двух гомологичных хромосом зиготы в процессе мейоза одна хромосома — с геном А — попадает в одну гамету, другая — с геном а — в другую гамету): 

Гибридизация — процесс скрещивания двух организмов одного вида (внутривидовая гибридизация) или разных видов или родов (отдаленная гибридизация).

Гибрид — организм, полученный путем скрещивания генетически разных организмов.

Моногибридное скрещивание — скрещивание организмов, отличающихся друг от друга альтернативными вариантами только одного признака (одной парой аллелей).

Анализирующее скрещивание — скрещивание изучаемого организма с организмом, имеющим рецессивный гомозиготный генотип (и образующим только один тип гамет с рецессивными аллелями). Позволяет установить генотип изучаемого организма. Применяется в селекции растений и животных.

Дигибридное скрещивание — скрещивание организмов, отличающихся друг от друга альтернативными вариантами двух признаков (двумя парами аллелей).

Полигибридное скрещивание — скрещивание организмов, отличающихся друг от друга альтернативными вариантами трех и более признаков.

Сцепленное наследование — совместное наследование генов, локализованных в одной хромосоме; гены образуют группы сцепления.

Расщепление признаков — проявляющееся среди потомства второго и последующих поколений определенное соотношение между количествами особей, характеризующихся альтернативными признаками исходных родительских форм.

■ Конкретные количественные соотношения между числами особей, несущими признаки каждой из родительских форм, определяются тем, каковы родительские организмы по данным признакам — гомозиготные или гетерозиготные.

Первый закон Менделя

Первый закон Менделя (закон единообразия гибридов первого поколения, или правило доминирования) описывает скрещивание гомозиготных особей: при скрещивании гомозиготных особей (взятых из чистых линий одного вида), отличающихся по одному из пары альтернативных признаков, получаемые гибриды первого поколения единообразны как по фенотипу, так и по генотипу.

Следствие: если первое поколение единообразно по одному из альтернативных признаков родительских особей, то данный признак является доминантным, а родительские особи гомозиготны по альтернативным признакам.

Второй закон Менделя

Второй закон Менделя (закон расщепления) описывает моно-гибридное скрещивание гетерозиготных особей: при скрещивании между собой гибридов первого поколения (т.е. гетерозиготных особей), отличающихся по одному из пары альтернативных признаков, во втором поколении наблюдается расщепление в соотношении 3 : 1 по фенотипу и 1 : 2 : 1 по генотипу.

Расщепление по фенотипу: три части потомков второго поколения с доминантным признаком и одна часть — с рецессивным.

Расщепление по генотипу: одна часть потомков — доминантные гомозиготы (АА), две части потомков — гетерозиготы (Аа) и одна часть — рецессивные гомозиготы (аа).

Следствия второго закона Менделя:

■ если потомство родительских особей дает расщепление по фенотипу, близкое к 3 : 1, то исходные родительские особи по данным аллелям гетерозиготны;

анализирующее скрещивание: если потомство родительских особей дает расщепление по фенотипу, близкое к 1 : 1, то одна из родительских особей была гетерозиготной, а другая — гомозиготной и несла пару рецессивных аллелей.

Третий закон Менделя

Третий закон Менделя (закон независимого наследования признаков) описывает дигибридное скрещивание особей: при скрещивании гомозиготных организмов, отличающихся по двум или нескольким парам признаков, во втором поколении наблюдается независимое наследование генов разных аллельных пар и соответствующих им признаков.

Т.е. каждая пара аллельных генов (и соответствующих им альтернативных признаков) наследуется независимо друг от друга (другая формулировка 3-го закона Менделя).

Определение возможных генотипов и вероятностей их появления у особей второго поколения: сначала определяется генотип первого поколения и тип его гамет Gf1 (см. таблицу),

после чего генотипы особей и вероятности их появления определяются с помощью решетки Пеннета .

Решетка Пеннета — таблица, с помощью которой изображают и анализируют расщепление независимо наследуемых признаков. По горизонтали в верхней строке этой решетки записываются женские гаметы, по вертикали в левом столбце — мужские гаметы, на пересечениях строк и столбцов — генотипы дочерних особей.

Пример: скрещивание гомозиготной особи гороха, характеризующейся двумя доминантными признаками — желтой окраской и гладкой формой семян, — с гомозиготной особью гороха, имеющей два альтернативных рецессивных признака — зеленую окраску и морщинистую форму семян.

Так как, согласно третьему закону Менделя, расщепление по каждому признаку идет независимо: по цвету (во втором поколении) в соотношении 3 : 1 (см.

второй закон Менделя), по форме — также в соотношении 3 : 1, то расщепление по фенотипу, т.е.

по комбинации признаков, наблюдается в соотношении (3 : 1)2 = 9 : 3 : 3 : 1 (девять частей из 16 составляют желтые гладкие семена, три части — желтые морщинистые, еще три части — зеленые гладкие и одну часть — зеленые морщинистые семена).

Из данных решетки Пеннета следует, что всего при дигибридном скрещивании гомозиготных особей (в частности, гороха) у особей второго поколения возможны девять различных генотипов (генотипических классов), которые распадаются на четыре фенотипических класса.

Потомки, доминантные по двум признакам (желтые гладкие семена гороха) имеют один из следующих генотипов (в скобках указана вероятность появления данного генотипа): ААВВ (1/16), ААВв (2/16), АаВВ (2/16) или АаВв (4/16); доминантные по первому и рецессивные по второму признаку (желтые морщинистые семена) — ААвв (1/16) или Аавв (2/16); рецессивные по первому и доминантные по второму признаку (зеленые гладкие семена) — ааВВ (1/16) или ааВв (2/16); рецессивные по обоим признакам — генотип аавв (1/16) (зеленые морщинистые семена).

❖ Расщепление по генотипу имеет вид:
■ при дигибридном скрещивании: (1:2:1)2;
■ при полигибридном скрещивании (1:2:1)n, где n — число расщепляющихся пар аллелей.

❖ Расщепление по фенотипу имеет вид:
■ при дигибридном скрещивании: (3 : 1)2 = 9 : 3 : 1;
■ при полигибридном скрещивании (3 : 1)n.

Следствия третьего закона Менделя:

■ если анализ расщепления по двум признакам дает по фенотипу соотношение, близкое к 9 : 3 : 3 : 1, то исходные родительские особи дигетерозиготны по этим признакам;

■ в общем случае каждый новый ген увеличивает число типов различных гамет в два раза, а число генотипов — в три раза. Следовательно, особь, гетерозиготная по п парам генов, может произвести 2” типов гамет и 3” различных генотипов;

■ число различающихся классов фенотипов равно числу различных типов гамет при наличии доминирования и числу различных генотипов в отсутствие доминирования.

Замечания:

■ третий закон Менделя, т.е. независимое комбинирование признаков, выполняется только при условии, что аллельные гены, определяющие эти признаки, находятся в разных парах гомологичных хромосом;

■ он не объясняет закономерности наследования генов, находящихся совместно в одной и той же хромосоме;

❖ Вычисление частоты определенного генотипа в потомстве родителей, отличающихся определенным числом независимо наследуемых генов:

■ сначала вычисляется вероятность появления соответствующего генотипа отдельно для каждой пары генов;

■ искомая частота равна произведению этих вероятностей. Пример: вычислить частоту генотипа АаЬЬСс в потомстве от скрещивания АаВbсс x АаВbСс.

Вероятность появления генотипа Аа в потомстве от скрещивания Аа x Аа равна 1/2; вероятность появления генотипа bb в потомстве от скрещивания Вb х Вb равна 1/4; вероятность появления генотипа Сс в потомстве от скрещивания Сс x сс равна 1/2.

Следовательно, вероятность появления генотипа АаbbСс составляет (1/2) х (1/4) х (1/2) = 1/16.

Условия выполнения и значение законов Менделя

Законы Менделя выполняются лишь в среднем, при большом числе однотипных опытов. Они являются следствием случайного сочетания гамет, несущих разные гены, и статистического характера наследования, определяемого большим числом равновероятных встреч гамет.

❖ Дополнительные условия, при которых выполняются законы Менделя:■ один ген должен контролировать только один признак, и один признак должен быть результатом действия только одного гена;■ доминирование должно быть полным;■ сцепление между генами должно отсутствовать;■ равновероятное образование гамет и зигот разного типа;■ равная вероятность выживания потомков с разными генотипами;

■ статистически большое количество скрещиваний.

Источник: https://esculappro.ru/zakonomernosti-nasledovaniya-priznakov.html

Основы генетики и селекции. Основные закономерности наследственности. Законы Менделя. Промежуточное наследование. Анализирующее скрещивание. Дигибридное скрещивание

Механизмы формирования гамет при независимом наследовании признаков

Биология. Справочные материалы

генетика, Гетерозиготы, Гомозиготы, Мендель

Генетика — наука, изучающая закономерности двух основных свойств живых организмов — наследственности и изменчивости (о наследственности и изменчивости см. в главе «Дарвинизм»).

Основоположником генетики является чешский ученый Грегор Мендель (1822 — 1884), проводивший в г. Брно опыты по скрещиванию различных форм гороха. Наблюдая за полученными гибридами, он установил ряд законов наследования, положивших начало генетике, и разработал метод гибридологического анализа, ставший основным ее методом.

Грегор Мендель

Метод гибридологического анализа предусматривает скрещивание особей с контрастными (альтернативными) признаками (например, цветки у одной особи гороха красные, у другой — белые и т. д.

); анализ проявления у гибридов только исследуемых признаков, без учета остальных; выращивание и анализ потомства каждой особи отдельно от других; ведение количественного учета гибридов, различающихся по исследуемым признакам. При гибридологическом анализе пользуются следующими общепринятыми символами.

Родительские организмы, взятые для скрещивания, обозначают буквой Р (от лат.

«парента» — родители); женский пол — знаком  — «зеркало Венеры», при записи схемы скрещивания его ставят первым; мужской — «щит и копье Марса», его пишут вторым; скрещивание обозначают знаком умножения « X »; гибридное потомство обозначают латинской буквой F (от лат. «филие» — дети) с цифрой, соответствующей порядковому номеру поколения: F1, F2 и т. д.

В своих опытах Мендель использовал различные типы скрещиваний.

Моногибридное скрещивание

Оно наиболее простое, так как родители отличаются друг от друга по одному признаку (например, по окраске цветков гороха — красной и белой) (64).

При анализе гибридов F1, Мендель установил, что все особи имеют одинаковые признаки. При этом проявляется только признак одного родителя — красные цветки, признак другого (белые цветки) отсутствует.

Признак, проявляющийся в F1, он назвал доминантным (преобладающим); признак отсутствовавший — рецессивным (отступающим).

Эта закономерность в генетике получила название закона доминирования или закона единообразия гибридов первого поколения (первый закон Менделя).

Процесс самоопыления

Проводя самоопыление гибридов F1, Мендель установил, что в F2 появляются особи как с доминантным признаком (красные цветки), так и с рецессивным (белые цветки) в отношении 3:1. Это явление получило название закона расщепления гибридов второго поколения или второго закона Менделя.

Для объяснения наблюдаемых закономерностей Мендель выдвинул гипотезу чистоты гамет, предположив следующее:

Любой признак формируется под влиянием материального фактора (позднее названного геном). Фактор, определяющий доминантный признак, он обозначил заглавной буквой А, а рецессивный — а.

Каждая особь содержит два фактора, определяющих развитие признака, из которых один она получает от матери, другой — от отца.

При образовании гамет происходит редукция факторов, и в каждую гамету попадает только один.

Согласно этой гипотезе, ход моногибридного скрещивания записывают так:

При любых сочетаниях гамет все гибриды имеют одинаковые генотип и фенотип

Из данной схемы видно, что при любых сочетаниях гамет все гибриды имеют одинаковые генотип и фенотип и что гипотеза чистоты гамет правильно объясняет законы единообразия гибридов первого поколения и доминирования.

При образовании гамет у гибридов F1, 1/2 будет нести фактор А, а 1/2 — а. При самоопылении и равновероятном сочетании гамет при оплодотворении в F2 ожидается следующее: при самоопылении однородное, нерасщепляющееся потомство. Они в гомологичных хромосомах содержат одинаковые аллельные гены (АА или аа) и образуют один сорт гамет.

Гетерозиготы — особи, дающие расщепление. Они содержат разные аллели (Аа) и образуют два сорта гамет: с геном А и геном а.

Промежуточное наследование

 Иногда у гибридов F1 не наблюдается полного доминирования.

Промежуточное наследование

В F2 расщепление по генотипу будет: 1 АА : 2 Аа : 1 аа, а по фенотипу: 3 краен. : 1 бел., таким, каким оно было в опыте, что говорит о достоверности гипотезы.

С открытием мейоза (40 лет спустя после работ Менделя) гипотеза чистоты гамет получила цитологическое подтверждение.

Например, высшие растения имеют диплоидный набор хромосом; после мейоза в каждую гамету попадает только одна из гомологичных хромосом, а следовательно, только один из аллельных генов.

Аллельными генами называют гены, расположенные в идентичных участках гомологичных хромосом. Дальнейший процесс наследования можно проследить на схеме.

Гипотеза чистоты гамет ввела ряд генетических понятий.

Гомозиготы — особи, дающие их признаки носят промежуточный характер (65). Такое наследование называют промежуточным наследованием или неполным доминированием.

При неполном доминировании F2 расщепление по фенотипу и генотипу выражается одинаковым отношением 1:2:1.

Анализирующее скрещивание

 При полном доминировании среди особей с доминантными признаками невозможно отличать гомозиготы от гетерозигот, а в этом часто возникает необходимость (например, чтобы определить, чистопородна или гибридна данная особь).

С этой целью проводят анализирующее скрещивание, при котором исследуемая особь с доминантными признаками скрещивается с рецессивной гомозиготой. Если потомство от такого скрещивания окажется однородным, значит, особь гомозиготна (ее генотип АА).

Если же в потомстве будет 50% особей с доминантными признаками, а 50% — с рецессивными, значит, особь гетерозиготна.

Анализирующее скрещивание

Дигибридное скрещивание

Чтобы определить, как будут наследоваться два (и более) признака одного родителя, Мендель проводил дигибридное скрещивание, в котором гомозиготные родители отличались друг от друга по двум признакам: окраске семян (желтая и зеленая) и форме семян (гладкая и морщинистая) (66).

Появление F1 особей с желтыми гладкими семенами свидетельствует о доминировании этих признаков и проявлении закона единообразия у гибридов F1. После их самоопыления в F2 появились особи четырех фенотипов. Два — сходные с родительскими (желтые гладкие и зеленые морщинистые), а два — новые, сочетающие признаки матери и отца (желтые морщинистые и зеленые гладкие).

Из этого видно, что при дигибридном скрещивании наблюдается независимое наследование признаков. Количественный анализ этих гибридов показывает, что дигибридное расщепление представляет собой два моногибридных расщепления, идущих независимо друг от друга. Оно выражается отношением 9:3:3:1, или (3:1)2.

Такой характер наследования получил название закона независимого наследования (распределения) признаков, или третьего закона Менделя. Согласно этому закону, расщепление по каждому признаку идет независимо от другого признака.

Независимое наследование признаков при дигибридном скрещивании обусловлено независимым поведением хромосом в мейозе при образовании гамет гибридами F1 (АаВв).

Оно выражается в том, что в анафазе I с одинаковой вероятностью к одному полюсу могут отойти либо обе материнские хромосомы, а к другому — обе отцовские, либо вместе с материнской хромосомой с геном А отойдет отцовская с геном в, а вместе с отцовской хромосомой с геном а — материнская с геном В.

Следовательно, гибриды из F1, (АаВв) с одинаковой вероятностью могут образовывать 4 типа гамет: АВ, ав, Ав и аВ.

Независимое наследование характерно только для тех признаков, гены которых находятся в разных хромосомах. Оно имеет огромное значение для эволюции, так как является источником комбинативной изменчивости и многообразия живых организмов.

, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Источник: https://kaz-ekzams.ru/biologiya/uchebnaya-literatura-po-biologii/biologiya-spravochnye-materialy/698-osnovy-genetiki-i-selekcii-osnovnye-zakonomernosti-nasledstvennosti-zakony-mendelya-promezhutochnoe-nasledovanie-analiziruyushhee-skreshhivanie-digibridnoe-skreshhivanie.html

Законы независимого наследования признаков. Законы Менделя. Генетика

Механизмы формирования гамет при независимом наследовании признаков

В результате исследований ученых К. Корренса, Г. де Фриза, Э. Чермака в 1900 году были «переоткрыты» законы генетики, сформулированные еще в 1865 году родоначальником науки наследственности – Грегором Менделем.

В своих опытах естествоиспытатель применил гибридологический метод, благодаря которому были сформулированы принципы наследования признаков и некоторых свойств организмов.

В данной статье мы рассмотрим основные закономерности передачи наследственности, изучаемые генетиком.

Г. Мендель и его исследования

Применение гибридологического метода позволило ученому установить ряд закономерностей, впоследствии названных законами Менделя. Например, им было сформулировано правило единообразия гибридов первого поколения (первый закон Менделя).

Он указывал на факт проявления у гибридов F1 только одного признака, контролируемого доминантным геном. Так, при скрещивании растений посевного гороха, сорта которого различались цветом семян (желтые и зеленые), все гибриды первого поколения имели только желтое окрашивание семян.

Более того, все эти особи имели также и одинаковый генотип (являлись гетерозиготами).

Закон расщепления

Продолжая скрещивать между собой особи, взятые из гибридов первого поколения, Мендель получил в F2 расщепление признаков.

Другими словами, фенотипически были выявлены растения с рецессивным алеллем исследуемого признака (зеленой окраской семян) в количестве одной трети от всех гибридов.

Таким образом, установленные законы независимого наследования признаков позволили Менделю проследить механизм передачи как доминантных, так и рецессивных генов в нескольких поколениях гибридов.

Ди- и полигибридное скрещивание

В последующих экспериментах Мендель усложнил условия их проведения. Теперь, для скрещивания брались растения, отличающиеся как двумя, так и большим количеством пар альтернативных признаков.

Ученый проследил принципы наследования доминантных и рецессивных генов и получил результаты расщепления, которые можно представить общей формулой (3:1)n, где n – количеств пар альтернативных признаков, которыми отличаются родительские особи.

Так, для дигибридного скрещивания расщепление по фенотипу у гибридов второго поколения будет иметь вид: (3:1)2=9:6:1 или 9:3:3:1.

То есть у гибридов второго поколения можно наблюдать четыре вида фенотипов: растения с желтыми гладкими (9/16 частей), с желтыми морщинистыми (3/16), с зелеными гладкими (3/16) и с зелеными морщинистыми семенами (1/16 часть). Таким образом, законы независимого наследования признаков получили свое математическое подтверждение, и полигибридное скрещивание стали рассматривать как несколько моногибридных – «накладывающихся» друг на друга.

Виды наследования

В генетике присутствуют несколько типов передачи признаков и свойств от родителей к детям. Главным критерием здесь служит форма контроля признака, осуществляемая либо одним геном – моногенное наследование, или несколькими – полигенное наследование.

Ранее мы рассмотрели законы независимого наследования признаков для моно- и дигибридного скрещивания, а именно первый, второй и третий закон Менделя. Сейчас мы рассмотрим такую форму, как сцепленное наследование. Его теоретическую основу представляет теория Томаса Моргана, названная хромосомной.

Ученый доказал, что наряду с признаками, передаваемыми потомству независимо, существуют такие виды наследования, как аутосомное и связанное с полом сцепление.

В этих случаях несколько признаков у одной особи наследуются вместе, так как контролируются генами, локализованными в одной хромосоме и расположенными в ней рядом – друг за другом. Они образуют группы сцепления, количество которых равно гаплоидному набору хромосом.

К примеру, у человека кариотип составляет 46 хромосом, что соответствует 23 группам сцепления.

Было установлено, что чем меньше расстояние между генами в хромосоме, тем реже между ними возникает процесс кроссинговера, который приводит к явлению наследственной изменчивости.

Как наследуются гены, локализованные в Х-хромосоме

Продолжим изучать закономерности наследования, подчиняющиеся хромосомной теории Моргана.

Генетическими исследованиями было установлено, что как у человека, так и у животных (рыб, птиц, млекопитающих) присутствует группа признаков, на механизм наследования которых влияет пол особи.

Например, окраска шерсти у кошек, цветное зрение и свертываемость крови у человека контролируются генами, расположенными в половой Х-хромосоме.

Так дефекты соответствующих генов у человека фенотипически проявляются в форме наследственных заболеваний, называемых генными. К ним относятся гемофилия и дальтонизм. Открытия Г. Менделя и Т. Моргана позволили применять законы генетики в таких важнейших областях человеческого общества, как медицина, сельское хозяйство, селекция животных, растений и микроорганизмов.

Взаимосвязь между генами и определяемыми ими свойствами

Благодаря современным генетическим исследованиям, было установлено, что законы независимого наследования признаков подлежат дальнейшему расширению, так как отношение «1 ген – 1 признак», лежащее в их основе, не является универсальным.

В науке стали известны случаи множественного действия генов, а также взаимодействия неалелльных их форм. К таким видам относится эпистаз, комплиментарность, полимерия.

Так было установлено, что количество пигмента кожи мелатонина, отвечающее за её цвет, контролируется целой группой наследственных задатков. Чем больше в генотипе человека доминантных генов, отвечающих за синтез пигмента, тем темнее кожа.

Этот пример иллюстрирует такое взаимодействие, как полимерия. У растений данная форма наследования присуща видам семейства злаковых, у которых окраска зерновки контролируется группой полимерных генов.

Таким образом, у каждого организма генотип представлен целостной системой. Она сформировалась в результате исторического развития биологического вида – филогенеза. Состояние большинства признаков и свойств особи — это результат взаимодействия генов, как аллельных, так и неаллельных, а сами они могут влиять на развитие сразу нескольких признаков организма.

Источник: https://FB.ru/article/285871/zakonyi-nezavisimogo-nasledovaniya-priznakov-zakonyi-mendelya-genetika

Портал Юриста
Добавить комментарий